
A Procedure for a Unified Approach to
Analysis and Development Projects

Bernd Eichenauer, IBE

1. Preface

Below we describe a procedure for analyzing and developing systems with discrete
concurrent processes. Its basic elements have been known since the sixties [1], but
because of its awkwardness it has hardly been used in practice until a few years ago.
Now that fast and user-friendly computers are available at almost every workplace, we
have the prerequisites for an efficient use of the procedure, which numerous authors
have extended in the last three decades.

Recently the procedure has been implemented in practice and adapted to today's user
interfaces (e.g., [2]). The result is development tools that are easy to use and that can
be employed wherever technical or commercial processes need to be planned and
implemented.

This article was written to show that previous objections to the Petri net method no
longer apply, and to demonstrate the enormous advantages this method provides in
working on analysis and development projects.

2. The Three-Phase Model in Processing Analysis and Development Projects

If one gave a system developer the task of developing a product, for example a
computer program or a vehicle, and of delivering it without any tests, the developer
would rightly reject such a project. We know that we make mistakes during system
development, and that most of these errors can be eliminated through the use of follow-
on tests. No one doubts today that a product should be delivered only after extensive
quality assurance measures [3]. Normally one can assume that, depending on the
application area, one must allocate between 30% and 50% of the total development
costs for component and system tests of technical products.

While testing procedures can be applied without problems during development of
technical products, (since prototypes of the products are available for testing), until
recently this was not possible when designing or changing operational processes, aside
from the rarely used and expensive practice scenarios. As a result, modeling was often
concluded after the specification phase, and experience with the dynamic behavior of
the specified model had to be obtained with "real life" tests.

Removing the planning errors and weak points which are unavoidable with this
approach often results in enormous additional costs which could have been at least
partly avoided, had appropriate planning aids been available. Surely the numerous
corporate reorganizations about which we hear so much today can be traced back in
part to earlier planning errors.

2

In recent years, due to rapid progress in computer technology, development systems
have become possible which allow us to economically create realistic prototypes of
general technical and/or commercial systems before they are implemented. This allows
us to gain early experience with the dynamic behavior of a planned system, and to use
the model to study and optimize the real system to be implemented.

A prerequisite here is a suitable specification method for model design, one that lets us
consistently describe both the static and the dynamic behaviour of the system under
design. For this we need a descriptive language which can describe all aspects of the
model to be developed, and which has none of the flaws we know from the descriptive
means in the many available CASE tools. We know that consistency in descriptive
methodology means efficiency in development and alteration, a better overview and
fewer errors.

The first two phases of a project are the specification phase and the simulation phase.
For many applications that are restricted to analyses (which occur especially in the
commercial field), only these first two phases are significant. In a third phase, which
becomes more interesting in technical applications, the model can be connected to its
environment and then, where applicable, be implemented directly as an automation
program. With increasing interweaving of operational and technical processes (e.g., with
decentrally organized production systems) and with faster and faster hardware, this third
phase is becoming ever more important.

3. The Specification Phase

To implement the three-phase model, the frequently used, more informal descriptive
procedures (flow diagrams, hierarchy diagrams, etc.) do not suffice. Rather, we need an
exact system description, without which a meaningful simulation and, even more
important, the program implementation, is not possible. But at the same time the
modeling process should be so simple and practical that even users without extensive
programming experience can apply it successfully.

3.1 Extended Petri Nets

One methodology which fulfills both the demand for exactitude and that for simple
formulation was already proposed in the early sixties by Petri [1]. The Petri nets named
after him (e.g., [4,5,6]), while they do allow an exact graphical model specification, were
previously so impractical in their use that initially they were of only scientific interest. But
through the possibilities of modern computer technology, the method, with numerous
extensions in recent years, has become much more attractive, and it is currently one of
the few practically applicable methods which are suitable both for specification and for
the simulation of discrete concurrent processes.

Superficially, a Petri net is similar to a flow diagram. Both are based on graphs, and both
depict the current system status graphically. But in contrast to flow diagrams, Petri nets
are strongly structured. They show an exactly defined graphical syntax and clear
semantics.

3

Petri nets are event-oriented, and can be constructed from a few simple graphical
elements. They consist of two different node types (places and transitions), of
connectors and tokens (Fig. 1).

Tokens represent the objects to be processed, such as information, materials,
accounts, tools, warehoused goods, transport vehicles, etc. Status
changes in the system are reflected in the movement of tokens from
places to transitions and on to other places.

Places are the passive elements of a Petri net. They serve as storage areas for
information and tokens. The location of tokens on the places of a Petri Net
represents the current status of the net.

Transitions are the active elements of a Petri net. They execute actions and process
information. A transition removes tokens from entry places, changes their
characteristics according to procedures specified by the user, and places
new tokens on output places.

Connectors connect places and transitions.

We say that a transition "fires" when the
conditions are met for removing tokens
from their input places and subsequently
allocating other tokens to their output
places. Conditions for firing could include
having a token on all input places of the
transition, or that during firing the
predefined capacity of an output place is
not exceeded.

Over the years the original Petri nets, like
every other technical development, were
improved and extended numerous times.
This included significant expansion of the
original Petri net concept, so as to increase
user acceptance. The goal was to make
available efficient tools which allow the
rapid and intuitive design of complex
systems. Below we discuss a representative sample of the extensions which we make
use of during the modeling process.

3.2 Object-oriented Model Design

Petri nets are excellently suited for object-oriented design of applications. After all, the
different elements of Petri nets abstract the general building blocks of event-oriented,
parallel, discrete systems. The dynamic object flow is formulated independently of what
the components of the Petri net mean in the real world. That is why Petri nets can be
used to design the most various applications.

 Fig. 1: Net elements of generalized Petri nets

4

What meaning the individual elements of a Petri net have in a specific application area
is determined by the user himself, from case to case. Thus, as mentioned above, the
dynamic objects that move within a Petri net (tokens) can represent a message in the
model of a communications system, while in the model of a production system they
represent some product or material on a conveyor belt. Since tokens are stored in
places, the places serve to model the senders and recipients of messages, or to model
theproduction line. And transitions indicate how messages are transmitted, and what
processing measures should take place, or they model the processing machinery for the
material on the production line.

How flexible and simple the correlation between the components of a Petri net and real
objects is, can be seen in the intersection model depicted in Fig. 6. Here the tokens
represent the different vehicles, the places represent the intersecting streets, and the
transitions are used to depict, among other things, the traffic lights.

3.3 Naming and Attribution of Petri Net Elements

To describe processing within transitions and for attribution of tokens and connectors
we can in principle use any desired programming language. But any programming
language to be used to process Petri nets should meet the following requirements:

• As already mentioned, the various net elements must be viewed as objects to
which the user assigns real objects during modeling; therefore the programming
language to be used should also be object-oriented. If the individual objects of
the Petri net are instances of appropriately defined classes, we can consistently
formulate an object-oriented model.

• The language should allow rapid switching between the editor and the simulator
during development. This can speed up the development process; e.g., partial
nets can be tried out without problems, and errors can be quickly eliminated
during debugging.

• The language should be available for all current computers and operating
systems, and should make it possible to transfer nets effortlessly from one
computer type to another.

• The language should be simple and intuitively understandable, and should be
easy to learn and implement, even for users with little programming experience.

One programming language that fully meets all these requirements is Smalltalk-80 as
implemented by ParcPlace Systems Inc. [7,8]. Smalltalk-80, combined with the class
library, provides a powerful object-oriented language, and can be put to use without
extensive programming experience. In our examples further below Smalltalk-80 code
was blended in everywhere.

Most of the elements in our expanded Petri nets can be labeled with text. While
comments can be formulated as free text strings, the actual inscriptions are Smalltalk
commands and must therefore meet the Smalltalk conventions.

5

The behavior of transitions during the firing of tokens is defined via inscriptions. The
interaction occurs as soon as messages are exchanged with the incoming tokens.
Messages can alter the attributes of tokens, or test their value, if e.g. the execution of
the transition code depends on the current status of the net (the value of a token
attribute).

To every initial token we can assign any desired number of attributes. Each attribute is
defined by Smalltalk commands
which are executed when the token
is produced. The value of the last
command provides the value of the
attribute. The inscribed Smalltalk
code can consist of a very simple
object, for example an integer or
another literal; but it can also be a
complex program. Fig. 2 shows a
window in which the initial tokens for
the place "place1" are defined.
"place1" consists of four initial
tokens. The third token has two
attributes. The second attribute is
the integer 22.

As with tokens, we can assign attributes to connectors as well. Through such attributed
connectors only those tokens can flow whose attributes are compatible with the
connector attributes. This allows, among other things, the selection of a specific
connector for the flow of a token.

The inscriptions of transitions are subdivided into the three components: condition code,
delay code and action code.

The condition code, which must produce one of the boolean values, "true" or "false,"
allows us to make activation of a transition dependent on the values of the input tokens.
If processing of the condition code results in the value "false," the transition cannot be
activated.

Classical Petri nets operate without reference to time. All transitions are processed si-
multaneously if their required conditions are met. This allows modeling of the
"simultaneity" of parallel processes. This of course is inadequate for modeling real
systems and for the process-dependent real time behavior of a target system. For this
reason some Petri net extensions permit assignment of time-related behavior to each
transition, by delaying the triggering of a transition. By way of the delay code, which
must produce a non-negative number, the firing of a transition can be delayed by as
many simulator time units as the number states. We will come back to the concept of a
"simulator time unit" later.

 Fig. 2: Declaration of initial tokens and their
 attributes

6

The action code, finally, is
processed as soon as the
transition has fired. Action
code is usually employed to
assign values to variables,
which are used elsewhere in
the net, to change attributes
or to produce side effects.
For example, we can use the
action code to update a list
displayed in a window, to
show its latest status, or to
read in a value from a control
input device.

Fig. 3 shows a simple net in
which Smalltalk inscriptions
are used. The tokens carry
values as attributes; by
means of the action codes
these values are increased,
or, if a boundary is
exceeded, the values are set
back again. A token with the
attribute value 4 runs directly
from the upper transition to the right place. A second token with the attribute value 5 is
waiting in the left place.

3.4 Start- and End-Code

We can assign a start- and end-code to every net. The start-code often serves to
initialize global variables, and is executed when the net is started. With the end-code we
can, for example, set back external devices used in the simulation or during execution of
the net.

3.5 Hierarchical Structuring

For the sake of a clear overview, complex nets are structured hierarchically, i.e.,
subdivided into a primary net and subnets. The subnets to be assigned to the individual
levels can be freely defined at any time, through selection of network nodes of higher-
lying levels. The number of hierarchical levels may not be restricted. This makes it
possible to develop a system top-down or bottom-up, as desired. Sometimes we even
use a middle-out development.

Essentially there are two types of subnets, namely "modules" and "channels" (see Fig.
1).

 Fig. 3: Simple example net with Smalltalk inscriptions
 and tokens

7

Modules are active elements which may contain all types of net elements. Each module
can be stored individually, and can be re-loaded, or inserted into an existing net. For
reasons of transparency the interfaces to modules in the upper net level should also be
shown in the refined lower net, so that the integration of the module is clearly visible in
the lower net as well.

Channels are refined passive
net elements which
themselves consist of places
and channels. Here also, to
provide a clear overview, the
interfaces to the active
elements in the upper net
should be clearly
recognizable in the lower net

While the importance of
modules during net
development is self-evident,
that of channels, whose use
is advantageous in creating
complex nets, is not
immediately clear. Therefore, below we want to clarify the channel concept with the
following analogy:

Places behave like individual connection lines between hardware
modules. Channels behave like pipes which encase bundles of
connection lines, and they connect modules.

3.6 Several Tokens Per Place

In the original Petri nets, a place was able to store only one token. But in practice it
quickly becomes clear that nets which allow only one token per place tended to become
very bloated even with small models. To provide an improved overview and to allow
reality-proximate formulation of models, many Petri net extensions provided for use of
any desired number of tokens. The maximum number of tokens at a place can usually
be specified by the user.

Beyond that, many extensions allow specification of a deterministic or random
processing sequence for tokens, if a transition is to fire several tokens simultaneously.

3.7 Statistical Functions

As a rule, Petri net tools contain online statistical functions in the form of freely definable
line and bar diagrams. Diagrams with statistical information can often be connected to
the various net elements with a few mouse clicks. We will discuss this further in Section
4.

 Fig. 4: Establisching hierarchical levels for Petri nets -
 refinement of levels

8

3.8 Freely Definable Graphics for Net Elements

The user interface described above has the same advantages and disadvantages as
the user interface of many other development tools. On the one hand, the user interface
can be easily learned because of the limited number of elements. On the other hand,
even small specifications, and large ones all the more so, quickly lose a clear overview,
even if they are organized hierarchically. Anyone who has ever reviewed or produced a
larger graphical specification, organized, e.g., according to "structured analysis," will
know exactly what we mean.

Since our design method is object-
oriented, we have the option of
assigning graphic representations
to the individual net elements. After
all, the user of extended Petri nets
associates his objects with the
various net elements. Therefore it is
useful to replace the previously
described standard icons with
graphics that clearly depict the
association of a net element with an
element of physical reality.

For this reason, several Petri net
tools offer the option of replacing
the standard icons shown in Fig. 1
with icons or bitmaps. This option
is very important, because when
one is using or evaluating models,
one is usually not interested in the
most minute implementation
details, but rather in the user
interface that the tool offers. Just
as with conventionally developed
program systems, the user usually
cares only about functionality and the user interface. He doesn't care about the
implementation process or the associated source code. At least the uppermost
hierarchy levels of models used for daily work should be intuitively understandable and
usable.

Fig. 5: Example net with standard
 icons

 Fig. 6: Example net from Fig. 5 with user defined
icons.

9

Comparison of the two example versions shown in Fig. 5 and Fig. 6 shows how
dramatically we can improve understanding of a net by using icons for the net elements.
Both figures depict the same net. Although it is rather simple, the standard icons in Fig.
5 make us struggle to see what application is depicted. Fig. 6 makes the application
evident at first glance.

To create the user icons we can use any of the numerous paint programs, or an icon
editor. Most icon editors are shipped with huge icon libraries, allowing easy insertion of
icons into nets (assuming that the development tool being used provides for icon
import).

3.9 A Complete Example

Let's examine the simple transport problem shown in Fig. 7. It consists of two operating
robots and a turntable with three positions. If the container in Position1 is empty, then
Robot1 can put a part in it. If the container in Position3 is full, Robot2 can remove the
part from it. The turntable requires a time unit for turning the containers from one
position to the next.

To conserve space, we won't
discuss the source of the parts
to be moved (module "Parts-
Source") and their further
processing (module "Parts-
Treatment") here. We'll simply
assume that the parts will arrive
and will be processed
statistically.

Fig. 8 and Fig. 9 show the two
modules, "PartsSource " and
"PartsTreatment." Here we
clearly assume a random
distribution of the points in time
when a part is delivered or
used. Delivery of parts is as
follows (Fig. 8): the token
located at a given place is
delayed by the random value of
the time delay. Then the transition fires, and delivers a token to each of the places
connected to it. One is used to plan the next part delivery. The token which runs to the
place "PartsArrival" represents the part delivered from outside the system.

Fig. 10 and Fig. 11 model the work of the processing robots. Here again we're looking
only at the delivery of parts. In the container at "Position1" there is a token whose
attributes indicate which of the three containers on the turntable is in position, and that
this container is empty. The transition "HandlingRobot1" can fire only if, along with this
token, there is also a token (a part) in the place "PartsArrival." If the transition fires, it

 Fig. 7: Uppermost hierarchy level of a simple
 transport problem

10

collects both tokens and places a token with the attribute value "full" (a part) in the
container at "Position1."

The model of the turntable shown in Fig. 12 is only a little more complicated. Here we
see, a bit more subtly, the input/output interfaces "Position1" and "Position3" from the
next-higher level (Fig. 7) with its initial values and the container "Position2" which is not
accessible to either handling robot. The partial net shown here rotates the current
attributes regarding the three stated positions.

Since the turntable switches the positions according to a time unit, the transition "tr4"
fires once in each time unit and places a token in each of the places, pl1 to pl4. The
token inserted in pl1 plans firing up to the next time unit. Until that point, transitions tr1
through tr3 fire, since there is a token in each of the input places of all these transitions,
and they transport the tokens lying in the three positions on to the next position in each
case.

 Fig. 9: Use of parts

 Fig. 8: Production of parts

 Fig. 10: Placing a part in a container
 Fig. 11: Removing a part from
 a container

11

This example shows on the one
hand how simply and clearly
event-oriented, parallel, discrete
processes can be visualized with
Petri nets. On the other hand it
shows that the modeling tools
used have general application.

4. The Simulation Phase

In the simulation phase, a correct
net, even if still incomplete, can
be activated to analyze its
dynamic behavior. By "correct"
we mean a net for which all
statically possible tests (test for
appropriate net construction,
syntactic and semantic tests of the inscribed code) have proven successful.

4.1 Simulation Modes and Debugging Aids

The current Petri net tools usually provide two modes for executing nets.

Animation Mode
Nets can be tested efficiently if one can observe the net's execution at an
adjustable speed, pausing as needed, making changes, and then resuming.
During animation one can see how the tokens (or the user-defined application-
oriented icons) flow from place to place. Switching occurs automatically between
the individual partial nets displayed in individual windows.

For analyzing critical net sections, e.g., delays in partial processes which delay
the overall process, many tools can switch to stepwise processing. This option
allows a pause after each step in the simulation, so we can look at the current
status of the net (contents of the places, values of attributes and variables, etc.).
Some development tools also offer the option of letting the simulation run
stepwise in reverse.

Background Mode
Once we have verified the principal functioning of a net, we can optimize it by
varying parameters, possibly making some changes of its structure in the
process. In this case it is useful to let the net run at optimal speed in the
background, without animation, gathering statistical data as it runs. These data
are provided to the user in tabular and/or graphical form, so he can determine
whether the model can meet his requirements.

We can define interruption points for both simulation modes. Most tools permit definition
of node interruption points. If a node with an active interruption point is reached during

 Fig. 12: Model of a turntable with three containers

12

simulation, the simulation is halted. The window containing the interrupting node is
opened and activated.

Petri net tools with time modeling also allow temporal interruption points. Here a
simulation is interrupted as soon as a specified simulation time point is reached.
Temporal interruption points are used, e.g., to evaluate nets which must be processed
within a specified time span.

4.2 Important Concepts

Although the user need not know many details of the structure of Petri net simulators,
some background knowledge is useful for understanding the behavior of models during
simulation. Therefore we will briefly describe a few important concepts and their
background.

Simulation Time
The original definition of Petri nets prescribes the timeless switching of transitions. Thus,
as soon as the conditions for firing a transition are met, the change in assignments
should take place without reference to time. In classical Petri nets, the temporal
sequence of events plays a role only insofar as events take place in a specific
sequence, and the principle of causality applies.

Extensive articles have been written about procedures to introduce the concept of time
into Petri nets (see, e.g., [4] and the literature cited there). Often the model of so-called
"activation time" is used. Each transition can be assigned an activation time which
indicates how many simulator time units should pass between the activation of a
transition and its earliest switching. The model described in section 3.9 used activation
times repeatedly.

During simulation it normally doesn't matter what the relationship is of the simulator time
unit to physical time units, since only the relative behavior of the sequences is of
interest. Therefore this approach allows us to simulate both very rapid or very slow
processes.

Events
An event occurs when the conditions for firing a transition are met. An event consists of
a transition, its input tokens and, where applicable, the current values of further
simulator data which must be considered in firing the transitions. The simulator stores all
events which are already completed, or which are planned for a later point in time, in an
event list. This event list is a chronologically sorted listing of all events.

Each entry in the event list consists of a time indication and a quantity of events which
are to occur at that time.

Simulation Algorithm
The lack of dependence on real time described above is also the reason why the time
required to execute a simulation is held within reasonable limits. In his mind, the user

13

can assign a physical time unit appropriate to the modeled system, but this of course
does not affect the temporal execution of the simulation.

All transitions that are ready to fire at a specific time fire in parallel. The simulator
processes the simultaneously active firings sequentially. Once there is no longer any
fire-ready transition available, the simulation time is set to the next entry in the event list.

The course of the simulation is concluded once no transition can be fired any longer,
i.e., as soon as the event list is exhausted.

Simulation Protocol

The transitions fired last are noted in a list which is used during reverse runs of the
simulator. Many tools allow the user to define the length of the list, and thus also the
number of possible reverse steps.

4.3 Diagrams

Diagrams are useful only in nets that include time modeling. They permit graphical
illustration of data generated during simulation. As a rule, tools offer bar and line
diagrams which are bound to places and connectors (see Fig. 13).

The function which calculates the data to be displayed is activated each time before the
state of the associated net element changes. The element itself, and the time span
elapsed since the last activation, are provided by the input parameters to be evaluated
for calculation of the diagram values.
The user can introduce his own functions for depicting the characteristics which change
during simulation. Standardly we use the number of tokens or the value of a token
attribute as markers.

Bar Diagrams (Histograms)
For every interval of the X-axis, bar diagrams show the duration on the Y-axis during
which the number of tokens defined by the X-interval occurred in the net element.

For places, the change in condition of the associated net element is calculated to see
how long a specific number of tokens remained at that place. The number of tokens
situated on the place is shown on the X-line, while the Y-line shows the duration for
which this number of tokens was stored at that place. In the case of a queue model we
can thus determine, e.g., what queue lengths there are and how they relate to one
another (see Fig. 17).

In the case of a connector, we can show for each interval of the X-axis how often a
token whose first attribute value lies in the X-interval has passed over the connector.

14

Line Diagrams
In the case of line diagrams, a user-defined entity is specified as a function of time, and
connected with straight lines.

For places, we often use the
total number of tokens
located at a place as a
marker. As a default entity for
connectors we often use the
value of the first attribute of
the tokens passing through
the connector.

4.4 Data In- and Output
During Simulation

Using inscriptions, we can
easily perform data
input/output via an
input/output window.
Smalltalk-80 from ParkPlace
Systems Inc. allows
comfortable and efficient
input and output with
predefined classes and
methods which are
functionally identical for all
computer platforms. As an
example, let's examine a
Yes-No query via an input
window. With the command,

returnValue:= DialogView
confirm: "Do you want to continue the simulation?
initialAnswer:true.

we display the input window
illustrated in Fig. 14. The question is
answered by clicking one of the
buttons, and this assigns the selected
boolean result to the variable
returnValue.

In addition to conventional data input,
some tools also offer graphical data
entry by means of a bar gauge. For the net shown in Fig. 13, which depicts the

 Fig.13: Uppermost level of a banking model with line
 diagrams and sliding bar guides

 Fig.14: Example of an input window

15

uppermost level of a banking model, there are four bar gauges under the line diagrams;
with these gauges and a mouse or other pointer device, the user can vary the simulation
parameters.

4.5 Simulation Examples

Let's first examine the example shown in Section
3.9 and ask the question whether, given the model's
conditions, "parts-processing" will be supplied with
sufficient parts. Here we could link a histogram to
the place "request-parts" and then start the
simulation. We see the result in Fig. 15. Most of the
time, no request (token) is stored at the place
"request-parts"; thus "parts-processing" is receiving
an adequate supply of parts.

Fig. 16 shows a simple queue problem with one
servicing location. If we assume that a simulator
time unit corresponds to one minute, then on
average a "customer" should arrive every five
minutes. As a mean processing time, we assumed
3.33 minutes; thus a server is occupied, on
average, 66% of the time. The arrival and processing times are exponentially
distributed.

We are interested in seeing whether acceptable queue lengths occur normally, and
therefore attach a histogram to the queue. The result appears in Fig. 17. The Y-
coordinate shows the portions of the total time during which the individual queue lengths
occur.

5. The Implementation Phase

Production and testing of a specification is usually followed by its implementation. For
commercial applications, this consists of the adaptation of workflows and other
organizational measures to the developed model. Here the development system can be
of help only in those cases where it is clear that certain model characteristics cannot be
realized or implemented, and that therefore deviations from the original concept must be
considered. But such changes of the specification are like iterations in model
development, and should therefore be assigned to the two phases we have already
described.

In technical applications, implementation consists of the construction or alteration of
technical installations and their associated automation programs. Here too we might
require model iterations, based on what is do-able. The net specification itself, however,
can additionally be used to automatically generate the automation programs.

 Fig.15: Histogram for „request-
 parts“

16

Since a Petri net models only the
discrete steps within control flows,
and physical processes are
connected only functionally, the
specification must additionally
include program segments to
communicate with the physical
environment (e.g., I/O handlers and
drivers for processing peripherals).
Certain parts of the specification
which were needed for simulating
the environmental behavior (e.g.,
use of distribution functions to
create stochastic events) should be
replaced with commands which fix
the occurrence of an event in the
technical process (e.g., arrival of a
part or occurrence of a certain
interrupt).
There are essentially three methods
of getting from the net
representation to an executable
program:

Generation of Programs in High
Level Programming Languages
This is the most frequently used
method. From the net
representation, programs are
produced in a high level language
(usually C). With some
development tools the programs
must be reworked manually, at least
to complete the external functions
from processing input/output.

This method has the advantage
that it can be used with most
computers. But there are also
some disadvantages we should
mention. Where the program
cannot be completely generated
by the development tool, or, if
generation is complete and one
continues working directly with the
generated program, experience
with other CASE tools shows us
that the specification and program
diverge over time, and that later

 Fig. 16: Simple waiting queue model

 Fig.17: Distribution of waiting queue lengths

17

on expensive reverse engineering work is needed to update the specification.
Additionally, we must expect that further adaptation efforts will have to be made, since
compilation systems for the various target platforms implement varying dialects and
libraries.

Use of a Petri Net Machine
The preferred method can also be used with most platforms. It is based on a virtual Petri
Net Machine, PNM. Programs for the PNM (which must be implemented separately for
each target platform) are generated directly and completely from the net. In our case we
have the PNM available in ANSI-C and can therefore use it easily on various platforms.

To make this method work, the development tool must have components which can be
associated with external functions (e.g., handling programs for process devices) and
which can be replaced by simulation routines during the simulation process. So that the
program will run on the target platform, the virtual machine must be extended to include
these external functions.

This method is just as efficiency as direct translation into source code; because even
during direct generation, large parts of the generated code are data that are processed
interpretively. This method is the preferred procedure for developing embedded systems
and controllers.

Execution of a Net with the Petri Net Tool
The best and most elegant way to execute the net would be provided if the Petri net tool,
with certain changes and enhancements (such as connection to physical time), could be
used for program execution as well. As in the case of the PNM, the inscriptions which
reflect the parameters of characteristics of the physical environment would have to be
replaced by a second set of inscriptions by means of which, e.g., direct calls of external
procedures would integrate the connections with the environment into the net.

This possiblity was rejected in the past as too inefficient. But now that even faster
processors are available, it's no longer out of the question to use the development tool
for the third development phase as well. This means we have fully reached the goal of a
unified approach for system development.

6. Use of the Procedure in Various Application Areas

Making use of the Petri net development system PACE [2], the procedure we have
described has been successfully used in recent years in many areas of industry, in
governmental agencies, in research and in education. Below we shall list a small
selection of the successful applications to illustrate the broad application spectrum of
this procedure.

Industrial Applications
• Specification, simulation and optimization of automation projects for suppliers in

the automobile and paper industries

• Specification, simulation and optimization of production lines

18

• Simulation of communication networks

• Simulation of automatons

• Industrial workflow analysis

• Modeling and simulation of factory operations

• Programming controls

• Analysis and optimization of production lines for relays and optical sensors

• Engineering and consulting per DIN/ISO 9000

• Specification and simulation of the CIM production concept

• Analysis and optimization of existing transport facilities

• Logisitical simulation for military airports

• Simulation of group and line fabrication

• Simulation of paint shops

• Specification of CIMOSA business structures

• Planning of flexible finishing equipment for the automobile industry

• SPS programming of milling machines

• Programming of automatic ticket machines

• Minimization of waste in gear production

• Optimization of processor structure for online image processing

• Simulation of an aluminum factory, including development of an automation
program using the PACE simulator

• Modeling, simulation and optimization of a production line for solar collectors.

Administration
• Concept, review and refinement of luggage distribution in a large European

airport (Zurich Kloten)

• Analysis and optimization of the materials and information flow through different
divisions of a large company

19

• Activity processing and simulation of program execution

Commercial Applications
• Design and programming of prototypes for automatic tellermachines in banks

• Creation of network protocols

• Workflow modeling, simulation and results analysis for banks, insurance
companies and public agencies.

Research, Development and Education
Numerous university institutes, technical training institutes, research facilities and
development divisions of large companies use the procedure for teaching and for the
most varied research programs, such as

• Research on man-machine interfaces

• Modeling of fabrication cells

• Analysis of existing production methods, and development of new ones.

7. Summary and Prospects

As has become clear above, today we can use Petri net development systems to
develop systems consistently from specification through simulation, all the way to the
finished automation program. The functions needed in the first two development phases
are available in appropriate and efficient forms and hardly require modification.
Experience shows that the available functions meet all the needs which arise during
analysis and optimization of technical and commercial projects.

Compared with other procedures common today, the third phase is also very advanced.
As a rule, other procedures only transform statically tested specifications into higher
language source code. The generated programs must be manually reworked because
often only the execution structure is generated, and because the dynamic test can be
done only after program installation.

The PNM Petri Net Machine we have used will be required in the future as well, either if
we need very fast automation programs, or if the development platform differs from the
target platform and no Smalltalk system is available on the target system. The PNM
machine offers the advantage that installation of the generated programs is simple and
requires little effort. It would make sense to examine whether the PNM could be
implemented as a part of a core processor.

To my knowledge, no one has yet implemented direct program execution using a Petri
net tool.

20

References

[1] Carl Adam Petri: "Kommunikation mit Automaten," (Communications with
Automatic Equipment), Dissertation, published in: Schriften des Rheinisch-
Westfälischen Instituts für Instrumentelle Mathematik an der Universität Bonn,
Bonn, 1962.

[2] PACE User Manual, Version 2.3, 1996
IBE, Postfach 1142, D-85623 Glonn, Germany

[3] DIN EN ISO 9001 - 9003 : 1994, DIN Deutsches Institut für Normung e.V., Beuth
Verlag GmbH, Berlin.

[4] Bernd Baumgarten: "Petri-Netze: Grundlagen und Anwendungen" (Petri Nets:
Foundations and Applications) BI-Wiss-Verlag, Mannheim Wien Zurich, ISBN 3-
411-14291-X, 1990.

[5] J.L. Peterson: Petri Net theory and the Modelling of Systems, Prentice Hall, 1981

[6] Wolfgang Reisig: "Petri nets. An introduction", EATCS Monographs on
Theoretical Computer Science, Vol. 4, Springer Verlag, 1995.

[7] VisualWorks, User's Guide, Part Number: DS 10005002, 1994.
ParkPlace Systems, Inc., 999 E. Arques Avenue, Sunnyvale CA 94086-4593.

[8] Tim Howard: „The Smalltalk Developer’s Guide to VisualWorks“, SIGS Books,
New York, ISBN 1-884842-11-9, 1995

